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Two-Locus Heterogeneity Cannot Be Distinguished from Two-Locus
Epistasis on the Basis of Affected-Sib-Pair Data
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The observation of multiple linkage signals in the course of conducting genome screens for complex disorders raises
the question of whether distinct genes represent independent causes of disease (heterogeneity) or whether they
interact to produce the phenotype of interest (epistasis); and there has been a corresponding interest in statistical
methods for detecting and/or exploiting the distinction between these two possibilities. At the same time, researchers
are increasingly relying on affected-sib-pair (ASP) data. Here, we demonstrate an apparently unrecognized fact
about two-locus (2L) models and ASP data, namely, 2L heterogeneity and 2L epistasis cannot, in general, be
distinguished from one another on the basis of ASP marker data, as a matter of mathematical principle and therefore
regardless of sample size. By the same token, correlations across ASPs in single-locus LOD scores or other measures
also cannot be used to distinguish 2L heterogeneity from 2L epistasis. This raises questions about the measurement
of gene-gene interactions in terms of patterns of correlation in marker data. Portions of our results carry over to
larger pedigree structures as well, as long as only affected individuals are included in analyses; the extent to which
our overall findings apply to general pedigrees (including unaffected individuals) remains to be investigated.

Introduction

The observation of multiple linkage signals in the course
of conducting genome screens for complex disorders
raises the question of whether distinct genes represent
independent causes of disease (heterogeneity) or whether
they interact to produce the phenotype of interest (epi-
stasis); and there has been a corresponding interest in
statistical methods for detecting and/or exploiting the
distinction between these two possibilities. However, the
subject is complicated, for two reasons. The first is that,
although the terms “locus heterogeneity” and “epista-
sis” have straightforward definitions in classical genetics,
it is nevertheless not obvious how these terms should be
defined at the mathematical level for general (human)
applications. For example, many authors (e.g., Durner
et al. 1992; MacLean et al. 1993) consider two-locus
(2L) models in which the penetrances are the same for
disease-genotype carriers at each of two loci, as well as
for disease-genotype carriers at both loci, as heteroge-
neity models. If, however, the vernacular meaning of “het-
erogeneity” involves independent gene effects at each lo-
cus, then surely the penetrance for carriers at both loci
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should be higher than the penetrance for carriers at one
but not the other (see below for mathematical details).
The definition of heterogeneity used by Risch (1990)
precludes these equal-penetrance models, but it was also
unclear to us whether his definition corresponded to the
usual genetic concept of heterogeneity (again, see below
for mathematical details).

It has also become commonplace to use the terms
“epistasis” and “gene-gene interaction” interchange-
ably, and statistical measures of gene-gene interaction
are typically based on some aspects of the correlational
structure of the genotypic data across loci (e.g., Cox et
al. 1999; Holmans 2002). But it was not at all clear to
us initially how such correlations in genotypes related
to the classical genetic concept of epistasis. Other def-
initions of epistasis entail “multiplicativity” in the pen-
etrance matrices (see Hodge 1981; Risch 1990); but this
class of models has mathematical properties that conflict
with methods for detecting gene-gene interaction on the
basis of positive correlations, since these models predict
no correlation in the relevant (marginal) quantities (see
Hodge 1981; MacLean et al. 1993).

Thus, the first difficulty in considering statistical meth-
ods for distinguishing heterogeneity from epistasis is sim-
ply to derive mathematical expressions that correspond
appropriately to the ordinary genetic concepts. At the
outset, it was unclear to us which, if any, of the math-
ematical models in the literature did, in fact, correspond
to the genetic concepts of interest to us.

The second complication for any attempt to distinguish
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classes of multilocus models from one another in human
genetics is simply the number of parameters involved.
For instance, the full 2L model (for a dichotomous trait)
involves 11 parameters (two disease-allele frequencies
and nine penetrances; see below for details). The values
of these parameters are seldom known in advance, and
it is not clear whether heterogeneity and epistasis can be
truly distinguished by any method that involves fixing
these parameters at arbitrary (incorrect) values. At the
same time, it is not clear how many of these parameters
can, in fact, be estimated from typical data.

In addition to these inherent difficulties, researchers
are increasingly relying on affected-sib-pair (ASP) data
rather than on the larger pedigrees (including full nu-
clear families) favored by an earlier generation of gene
mappers. This trend exacerbates the difficulties of pa-
rameter estimation, since the number of parameters that
can be estimated from such data is far fewer than the
total parameters in a full 2L model. It might, however,
still be the case that some summary measures, such as
correlations, could be used to detect epistasis; indeed,
the current literature on gene-gene interactions tends to
focus on methods for ASP data (e.g., Holmans 2002).
Similarly, MacLean et al. (1993) demonstrated the feas-
ibility of estimating a “degree of epistasis” parameter
from sibship data, and this method works in ASP data
as well. But how is it possible to distinguish complex
classes of 2L models when estimation of the underlying
parameters is moot? Are these techniques really accom-
plishing what they set out to do?

In the present article, we rigorously investigate the
feasibility of distinguishing, in typical human data sets,
2L heterogeneity (2L HET) from 2L epistasis (2L EPI)
for dichotomous traits. We focus on ASP data, partly
because of the current popularity of ASP designs and
the proliferation of methods for detecting gene-gene in-
teraction on the basis of ASP data and partly for pur-
poses of mathematical clarity; we comment on exten-
sions to general pedigree data as we go. We begin with
the genetic concept of locus heterogeneity and derive
the corresponding mathematical expression. We then
prove that heterogeneity can never be established on the
basis of ASP (or any affecteds-only) data, for reasons
having to do with the underlying mathematical structure
of the models themselves; and we show why both the
approach of MacLean et al. (1993) and the methods
based on correlations (e.g., Holmans 2002) are not ad-
dressing epistasis in the usual genetic sense. Our results
also show, however, that there is a class of epistatic
models that could, in principle, be distinguished from
heterogeneity, provided that it were possible to estimate
certain aspects of the penetrance structure of the model
from the data. We then demonstrate that, as a general
rule, this cannot be done on the basis of ASP data,
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as a matter of mathematical principle and therefore
regardless of sample size.

Methods

Assumptions and Notation

Throughout the present article, we restrict our atten-
tion to dichotomous traits. For clarity of exposition, we
assume that there are exactly two trait loci (the A locus
and the B locus), each with 2 alleles (A and a, B and b,
respectively); and we assume that these alleles are not
directly observed. Define the allele frequencies p, =
P(A),g, = 1 — p, = P(a); and similarly for py,q5. We as-
sume that there is no clinical basis for differentiating
phenotypic effects of the A locus and the B locus; and
we assume that the trait loci are unlinked to one another.
We assume that parental genotypes are known at each
of two marker loci, M, (linked to the A locus) and M,
(linked to the B locus) and that the two markers are also
unlinked to one another; and we assume throughout that
all matings are fully informative at the marker loci, so
that identity-by-descent (IBD) sharing can be directly
scored for each ASP. We assume linkage equilibrium be-
tween each marker and the trait, as well as between the
two markers. Finally, we restrict our attention to a sub-
class of 2L models, in which two of the three marginal
penetrances at each locus are equal to one another. This
restriction enables us to describe each of the two loci as
either dominant (D) or recessive (R), which greatly sim-
plifies the exposition; however, it can be relaxed without
altering our fundamental findings.

For ASP data, under these assumptions, all of the ge-
notypic information conveyed by two markers can be
captured by the 3 x 3 matrix of joint (two marker) ob-
served IBD sharing; and a 2L model can accordingly be
represented by the 3 x 3 matrix of joint IBD-sharing
probabilities at the two marker loci. In general applica-
tions, for a 2L model, the nine entries in this IBD-sharing
matrix are, in turn, functions of 13 underlying parame-
ters: the recombination fractions between the A locus and
M, and between the B locus and M,, respectively; the
disease-allele frequencies at each of the two loci; and nine
penetrances, corresponding to each possible 2L genotype.

However, under our simplifying restriction on the pen-
etrance structure, there are at most four distinct pene-
trances in the model. If we adopt, for the moment, the
short-hand “carrier” to denote individuals who carry
the disease genotype (aa in the case of a R model and
AA or Aa in the case of a D model at the A locus; and
similarly for the B locus), then these four penetrances
become f, (the penetrance for carriers at the A locus but
not the B locus), f, (the penetrance for carriers at the B
locus but not the A locus), f,; (the penetrance for in-
dividuals who are carriers at both loci), and £, (the pen-
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etrance for noncarriers, which is sometimes called the
“phenocopy rate”). Note that, as defined here, f, and f;
apply only to carriers at one locus or the other but not
both. Table 1 illustrates this parameterization in the case
of a RR model.

Definitions of Heterogeneity and Epistasis

We define “2L HET” as any model in which the ge-
notype at each locus influences the phenotype indepen-
dently of the genotype at the other locus. This genetic
definition motivates our derivation of a mathematical
definition, as follows: Let K be the total prevalence of
disease, K, be the prevalence due to the action of ge-
notype at the A locus, and Kj be the prevalence due to
the B locus. (We rigorously define these terms below.)
Then, in the absence of any other causes of disease in
the population, we seek a definition of 2L HET that
produces a particular structure in the prevalence model,
namely, one in which K is defined by the elementary
probabilistic relationship

K=K, +Ks - K\Kp (1)

which is the general expression for the probability of a
union of two independent events.

This expression in terms of prevalence determines a
corresponding relationship among the penetrances.
Let g, be the probability of the ith trait genotype at
the A locus and the jth trait genotype at the B locus,
and let f; be the corresponding penetrances. Then
K = X,3.q; x f;, where the sums are taken over all pos-
sible genotypes i and ; at the A and B loci respectively.
On the basis of this expression, it is readily confirmed
by simple algebra that, to achieve the structure expressed
by equation (1), a specific relationship must obtain
among the penetrances as defined above. For example,
when we consider an RR model as an illustration, under
Hardy-Weinberg equilibrium, we have

K=gi1-g)fi+(1—qdaits + 92 i fus
=qiht g~ Gdslfht 1 —fi) -

Defining gqif, = K, and g;f; = K, and substituting in
(fx + 1z — fifs) for fuy vields the desired structure K =
K, + K, — K,K,.

The previous sentence contains definitions of K, and
K, that are more rigorous than the informal ones we
started with (“prevalence due to the A or B locus”), but
it may, on first blush, appear somewhat odd, since £,
and f; are not true marginal penetrances (which would
each be a function of allele frequencies at the other
locus). We started with a biological definition of “het-
erogeneity” in terms of independent gene action (the
effects of a mutation at one gene do not depend on
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Table 1

Penetrances for the Joint A Locus/B Locus Genotypes for
the Class of Two-Locus Models Considered in the Present
Article, lllustrated for an RR Model

Genotype AA Aa aa
BB fo fo fa
Bb fo fo Ta
bb fs fa fa

NOTE.—We consider a model to represent 2L HET if and
only if fuy = fa + f5 —fa f3; otherwise we consider the model
to represent 2L EPL.

mutation status at the other gene); but the probabilistic
definition of independence dictates that the penetrance
for carriers at one locus will, in fact, be a function of
carrier status at the other. Thus, equation (1) dictates
that, to satisfy the biological definition of “heteroge-
neity,” f, and f;—which are by definition the true pen-
etrances for carriers at one but not the other locus—must
also be the portion of the penetrance for carriers at both
loci that can be attributed to the action of the A (or B)
gene, or, more succinctly, the attributable penetrances
for their respective loci.

Another way of putting this is to note that, from a
genetic point of view, a heterogeneity model should be
one in which the trait model at each individual locus
can be written as an ordinary single-locus model, with-
out needing to incorporate parameters of the model at
the other locus. In this representation of the single-locus
component of the 2L model, then, penetrance can no
longer have the usual interpretation as simply the prob-
ability of being affected, because this quantity will in-
volve parameters of the other locus. Rather, our results
show that 2L HET entails writing these single-locus com-
ponents in terms of the somewhat more abstract concept
of “attributable penetrances.”

More generally, for any simple dominance model (RR,
RD, or DD), our genetic definition of “heterogeneity”
will require that the penetrances observe the relationship

fas = it s = (h * fi) (2)

We therefore define “2L. HET” as any 2L model that
satisfies equation (2); and we refer to equation (2) as the
“fundamental heterogeneity equation” (FHE).
Although our definition of 2L HET is designed to
capture what we believe is commonly meant in the hu-
man genetics literature by the term “heterogeneity,” we
note that it differs from some definitions used elsewhere.
For instance, except when f, = f; = 1, under our def-
inition a penetrance matrix in which f,; = fy = f; rep-
resents (negative) epistasis rather than heterogeneity; it
corresponds to a deficit in prevalence due to carriers of
both disease genotypes, relative to what would be ex-
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pected were the two genes to act in a probabilistically
independent manner, and it does not satisfy the FHE.
However, other authors do consider such cases as het-
erogeneity models (see Durner et al. 1992; MacLean et
al. 1993).

Also, although our definition of 2L HET superficially
resembles that of Risch (1990), his is derived from pen-
etrance quantities that coincide neither with our terms
fx and f; nor with the true marginal penetrances (which
would be functions of allele frequencies); and his defi-
nition precludes, for instance, models with no pheno-
copies (f, = 0). Our definition of 2L HET also differs
from his definition of an additive model.

We define “2L EPI,” by contrast with “2L HET,” as
any relationship among the penetrances that does not
satisfy the FHE (eq. [2]). This definition allows for either
a deficit or an excess penetrance for carriers of both
disease genotypes, relative to what is predicted by the
FHE. We note that this definition of 2L EPI may differ
from the classical concept of epistasis, in which the only
positive penetrance in the model applies to individuals
who are carriers at both trait loci. By contrast, our def-
inition allows for varying degrees of epistasis. Alterna-
tively, we can think of this as allowance for degrees of
interlocus dominance, by analogy with allowance for
varying degrees of intralocus dominance. Thus, we can
have “negative 2L EPL,” in which f,, <fy + f — (f4 %
fu); “positive 2L EPL” in which fyz > 71 + f — (fa X
fs); or “complete 2L EPI” (classical epistasis), in which
all penetrances except f,; are 0. Of particular interest is
the relationship between our definition of 2L EPI and
definitions based on positive correlations in marginal
IBD sharing (Cox et al. 1999; Holmans 2002). We return
to this topic below.

Results

We derive the results in stages, beginning with a very
simple model and progressing to a fairly general model.
Accordingly, we divide the “Results” section into four
subsections, as follows: in the section “Estimation of
Degree of Epistasis,” we consider the procedure of
MacLean et al. (1993) for estimating degree of epistasis
in a special elementary subclass of 2L models, and we
show that it cannot be used to establish 2L HET; in the
section “2L HET Can Never Be Established on the Basis
of ASP Data,” we show, using a slight generalization of
the MacLean model, that this difficulty is inherent in the
properties of the 2L HET model whenever the data com-
prise affected individuals only and, therefore, that 2L
HET can never be established on the basis of ASP data;
in the section “But Can We Sometimes Establish 2L EPI?,”
we investigate whether it is ever possible to establish 2L
EPI based on ASP data, for the general class of 2L models
as defined above, and show that, in general, aspects of
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the penetrance structure of the model necessary to do
so cannot be estimated from ASP data; finally, in the
section “Correlations and Gene-Gene Interaction,” we
consider the implications of these results for the inter-
pretation of gene-gene interactions in ASP data defined
in terms of marginal correlations in 2L IBD data, again,
for fully general models.

Estimation of Degree of Epistasis

For the purposes of this section and the following
section (“2L HET Can Never Be Established on the
Basis of ASP Data”), we make certain additional sim-
plifying assumptions. First, we assume that the recom-
bination fraction between each locus and its correspond-
ing (linked) marker is 0 and that this is known to the
investigator (i.e., that these parameters do not need to
be estimated). We also make a further, unrealistic, sim-
plifying assumption that all parents are doubly hetero-
zygous at each of the two trait loci as well as at the
marker loci; thus, trait-locus allele frequencies also can-
cel out of all likelihoods. These additional assumptions
serve only to simplify the algebraic derivation of IBD-
sharing probabilities from the generating penetrance ma-
trix and the resulting IBD formulas; they have no bearing
on our fundamental results.

We begin with the elegant parameterization of a 2L
model of MacLean et al. (1993). (We have adapted their
notation to conform to our own.) When f, = f;, the
penetrance structure for the class of 2L models we are
considering can be parameterized in terms of just two
quantities: f,; and a parameter \ (their original notation)
representing degree of epistasis, such that f, = f; =
Mg Table 2 shows the resulting penetrance table for a
simple 2L RR model, which we use to illustrate the results
of this section.

Note that, when N = 0, only individuals who are both
aa and bb have a positive probability of becoming af-
fected. Thus, N\ = 0 represents complete, or classical, epi-
stasis; and, as \ increases, the degree of epistasis decreases.
When N = 1, the penetrance is the same whether an
individual has the disease genotype at either or both loci.
MacLean et al. (1993) called this case “heterogeneity.”
As noted above, however, models in which A = 1 will
not satisfy the FHE unless f,; = 1. Thus, under our def-

Table 2

Penetrances for the Joint A-Locus/B-Locus Genotypes
Genotype AA Aa aa
BB 0 0 N X fag
Bb 0 0 A x fAB
bb N x fup N x fup fas

NOTE.—Penetrances are for the special model considered
in the “Estimation of Degree of Epistasis” section; for pur-
poses of illustration, an RR model is assumed.
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Table 3

IBD-Sharing Probabilities, P(Sharing i Marker Alleles IBD at the A
Locus, j Marker Alleles IBD at the B Locus | ASP), for the RR
Model Considered in the “Estimation of Degree of Epistasis”
Section

No. of IBD

Alleles i=0 i=1 i=

i=0 % % AL+ )
A A A

j=1 2N? 4N? 2N1 +N)
A A A

j=2 N1 +N) 2N1 +N) (1/72)(1 + 6N%)
A A A

NOTE.—A = sum of the numerators over all cells. See table 2 for
the penetrance model; see the “Estimation of Degree of Epistasis”
section for additional modeling assumptions.

inition of 2L HET, it is not immediately apparent what
value of N corresponds to complete absence of epistasis.

Table 3 shows the IBD-sharing probabilities among
ASPs for this generating model, again illustrated by an
RR model. We note that the parameter f,, has canceled
out of the constituent probabilities and does not appear
in the table; it therefore also does not appear in the
likelihood written as a function of these probabilities.
The parameter A, on the other hand, does appear in the
table. Thus, although f,; cannot be estimated from ASP
data, the observed IBD sharing matrix does contain in-
formation relevant to estimation of the penetrance struc-
ture of the model via the parameter \.

The question then becomes whether this information
is sufficient to enable us to distinguish heterogeneity
from epistasis. And here we encounter a difficulty, be-
cause the value of \ that satisfies the FHE depends upon
the (unknown) true, underlying penetrance f,;, through
the formula

1T fu

FHE = \ =
fas

Since 0 < f,; < 1, some algebra shows that this formula

Table 4
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implies 0.5 < X\ < 1; however, for A > 0.5, whether any
particular value of \ satisfies the FHE depends upon .
Thus, if we estimate A > 0.5, we cannot know whether
the model represents 2L HET or 2L EPI without know-
ing the value of f,;, and f,; itself cannot be estimated
from the IBD data. However, if an accurate estimate of
A < 0.5 were obtained, we would know that the model
was 2L EPI rather than 2L HET. We note that there is
nothing special about the RR model in this respect; the
same results are obtained for DD and DR models.

Thus, we have the peculiar result that, although it
is indeed possible to estimate the degree of epistasis
for this simple class of 2L models, when A\ > 0.5, it is
nevertheless not possible to establish that there is zo
epistasis. Moreover, these findings pertain to the true,
underlying (or generating) IBD-sharing probabilities.
Alternatively, thinking in terms of estimation of sharing
probabilities based on a data set of ASPs, our reasoning
is equivalent to assuming that the observed IBD data
follow their exact, expected proportions, as would occur
in very large samples. Thus, all conclusions drawn here
apply to asymptotic statistical inference.

This simple illustration illuminates the fundamental
underlying problem: the distinction between 21 HET
and 2L EPI is a matter of the penetrance structure of
the model, and ASPs contain limited information on pen-
etrances. As a result, the type of information needed to
differentiate the two classes of models is not necessarily
present in the IBD data.

2L HET Can Never Be Established on the Basis of ASP
Data

We now show that the basic result of the previous sec-
tion is not merely an artifact of the extreme simplicity of
the 2L model considered thus far. To do this, we need
only generalize the model somewhat to allow for the case
fs # f5 Thus, we return to the parameterization shown
in table 1, but still fixing /, = 0. For clarity of exposition,
all other simplifying assumptions remain as in the pre-
ceding section, “Estimation of Degree of Epistasis.”

We again show that there is a class of 2L models

IBD-Sharing Probabilities, P(Sharing i Marker Alleles IBD at the A Locus, j Marker Alleles IBD at the B Locus | ASP),
for the RR Model Considered in the “2L HET Can Never Be Established on the Basis of ASP Data” Section

No. of IBD

Alleles i=0 i=1 i=2

j=0 filfan X folfan 2(falfap * filfs) falfan(1 + falfan)
A A A

j=1 2(flfas * filfas) A(flfas * filfas) 2[filfas(1 + filfin)]
A A A

j=2 f/fas(1 + fi/fus) 2[fy/fan(1 + folfas)] (122)[3(falfan)* + 1 + 3(f/fas)’]
A A A

NOTE.—A = sum of the numerators over all cells.
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such that no amount of ASP data will suffice to establish
the model as 2L HET rather than 2L EPI. What distin-
guishes this case from what was considered in the pre-
ceding section, “Estimation of Degree of Epistasis,” is
that we now have three penetrance parameters (f,, f3,
and f,;) appearing in the formulae for the IBD-sharing
probabilities among ASPs, rather than just the one (\)
that appeared in the previous parameterization, as
shown in table 4. However, we note that only the two
penetrance ratios (fy/fap, [o/fss) appear in table 4; f,;
appears only in the context of these ratios. This again
illustrates, as above, that it is possible to estimate at
most all but one of the constituent penetrances in the
model based on ASP data.

We now prove that for any such model satisfying the
FHE and producing IBD-sharing matrix w, some other
model exists that produces the same 7 but that does not
satisfy the FHE. That is, for every possible f = (f4, /3,
fas) satisfying the FHE, there also exists a set of pene-
trances f* = (f,*, f3*, fas*) such that (i) f* does not
satisfy the FHE; and (i) f* gives rise to an IBD-sharing
table 7* that is identical to .

To show this result, we note that the FHE requires
(dividing both sides through by f,;)

j=h b A ﬁxm. (3)

—— =X
fis s T T

We now find our second penetrance vector f* by im-
posing the following two equalities:

ﬁ/ﬁﬁ = ﬁ\/ﬁm (4)

and

/s = folfss (5)

There are infinitely many solutions to these two equal-
ities, only some of which will satisfy the FHE. For the
sake of illustration, we select one pair of solutions:
£ = (fo, fas fun) = (0.400, 0.200, 0.520) and f* = (f7,
fos [vs) = (0.577,0.288, 0.769). It is readily confirmed
that the equalities in equations (4) and (5) are both sat-
isfied. Furthermore, the vector f satisfies the FHE in the
form of equation (3), but the vector f* does not. Thus,
f represents 2L HET, whereas f* represents positive 2L
EPI. Finally, plugging either f or f* into table 4 will
produce numerically identical results for the IBD-sharing
probabilities, since the penetrance ratios are identical for
the two models by stipulation (equations [4] and [5]).
Thus, we see that when the true model is 2L HET,
then we cannot establish, on the basis of the observed
IBD-sharing table, that the underlying model satisfies the
FHE, no matter how many ASPs we collect. Any IBD-
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sharing table that is compatible with 2L HET can also
be produced by a 2L EPI model. Therefore any observed
data compatible with 2L HET will also be equally com-
patible with 2L EPL The algebra of this example makes
clear that this result can be readily generalized to other,
more complicated 2L HET models. Equation [3] shows
that, in general, if we are able to estimate only ratios of
penetrances, then for every set of ratios satisfying the
FHE, we will always be able to find 2L EPI models that
generate the same IBD probability distributions. Thus,
based on all the information contained in a data set of
ASPs, no matter how large the sample size, we can never
establish that the true model represents heterogeneity
rather than epistasis.

This argument runs in one direction only: some 2L
EPI models do generate IBD tables that are incom-
patible with 2L HET. For example, any model in which
fulfas + fs/fas < 1 can never satisfy the FHE. The simplest
example of this type of model is the special case in which
e = felfis = 0 (and fi, > 0), or “complete” epistasis.
For example, under a very rare RR completely epistatic
model, in the absence of recombination, genotyping er-
rors, or other extraneous sources of variability, the IBD
sharing matrix will have a 1 for the “2,2” cell, and a 0
in all other cells. This pattern is incompatible with any
2L HET model.

We note that, although we have restricted our atten-
tion to ASPs, in fact, the results from this section extend
to any studies based on analysis of affected individuals
only. Such data do not provide sufficient information to
estimate the absolute values of the penetrances based on
marker data but only (at most) the relative values or
penetrance ratios; and, as we have seen, these ratios are
never sufficient to establish 2L HET.

But Can We Sometimes Establish 2L EPI?

The existence of 2L EPI models whose penetrance ra-
tios are incompatible with 2L HET raises the possibility
that we could sometimes establish 2L EPI on the basis
of ASP data. To do so, however, we would need to be
able to estimate the penetrance ratios. But can the pen-
etrance ratios be estimated from ASP data in a way that
makes differentiation of 2L EPI from 2L HET possible?
Because the parameters of the model have complicated
relationships with one another and because of the com-
plex nature of the 2L HET and 2L EPI constraints on
the parameter space, asymptotic theory does not provide
an answer to this question. Therefore, we have written
a computer program for numerical maximum-likelihood
estimation, as described below.

To produce results relevant to real applications, we
again consider the general four-penetrance, 2L model
shown (for an RR model) in table 1. But we now con-
sider the full set of eight unknown parameters, including
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the following: the allele frequencies p,, p,; the four
penetrances as shown; and two recombination frac-
tions (one corresponding to each marker).

We have programmed an algorithm for generating the
IBD-sharing probabilities from any given input vector
of these genetic parameters. The algorithm is similar to
that of Hodge (1981); see also Li and Sacks (1954); see
appendix A for details. Let 7, be the probability that an
ASP shares / marker alleles IBD at the A locus and
marker alleles IBD at the B locus (i,j = 0,1,2). These
w;s are functions of the underlying genetic parameters
of the model (disease-allele frequencies, recombination
fractions, and penetrances). We use the notation ) to
denote the IBD-sharing probabilities evaluated at the
true (generating) values of the underlying parameters.
Let n, be the corresponding observed number of pairs
sharing i,j marker alleles IBD. Because we are interested
in asymptotic properties of the likelihood, we assume
perfect data (i.e., we let n;, = N x =, where N is the
total number of ASPs in the data set).

The support function (log likelihood), defined up to
an arbitrary additive constant, can then be written as

M

2
S(x) oc >, > wllogm, . (6)

i=0;=0

To examine the asymptotic behavior of this support
function, for each generating model considered, equa-
tion (6) was evaluated at each point in a grid of values
for each parameter in the model, as described in appen-
dix A. From these calculations, all sets of parameters
that produced the maximum value of S(w) were found;
we refer to these as the “solutions” to the maximum
support function. (In every case, the generating set was
among the solutions, as expected.)

The set of solutions was further characterized in terms
of the number of unique solutions in the penetrance ratio
pairs (fa/fass fe/fas)- (As for any affecteds-only data, the
absolute values of all penetrances in the model cannot
be estimated.) Finally, for each generating model, each
solution was evaluated to determine whether it satisfied
the FHE (eq. [2]). Because f,, was specified to three
decimal places in the generating model, we considered
a solution to represent a 2L HET model if the FHE was
satisfied to three decimal places.

We have considered 29 generating models, covering
RR, RD, and DD penetrance tables, over a range of
generating values for each parameter; see appendix A
for details. In virtually every case, we find multiple so-
lutions in (fy / fass f5 / fas), that is, multiple sets of pen-
etrance ratios leading to the same maximum value of
S(w). Thus, the penetrance ratios are not identifiable
from ASP data. Moreover, for almost every generating
model we have examined so far, every maximizing vector
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(f/fspsfs!fas) Occurs in the solution set with multiple val-
ues of f,5, such that some of these solutions satisfy the
FHE while others do not. Thus, it appears that in real
applications it is not possible to estimate sufficient
penetrance structure to allow establishment of either
2L HET or 2L EPI based on ASP data, even when the
true underlying penetrance ratios are incompatible with
2L HET.

The only exception to these results that we have iden-
tified so far occurs when f, = 0 (no phenocopies) and
when the model represents “complete” epistasis (f, =
fz = 0). In this case only, the joint IBD-sharing distri-
bution gives rise to a single solution (fy/fas = fo/fas =
0), and this solution is sufficient to establish that the
model is 2L EPI rather than 2L HET. Allowing for re-
combination or high disease-allele frequencies has no
effect on this result.

The same is not true, however, if we allow for phe-
nocopies (e.g., fp = fa = [z = 0.05, f, = 1); in which
case we again obtain multiple solutions, some compat-
ible with the FHE and others not compatible with it.
Since it is hard to imagine an application in which the
baseline disease probability (phenocopy rate) is zero, at
least for the common complex disorders, these few ex-
ceptions seem unlikely to be relevant to data-analytic
practice.

Correlations and Gene-Gene Interaction

Intuitively, it might seem that 2L EPI should produce
positive correlations in the marginal IBD sharing across
markers, assuming each one is linked to one of the two
genes in the 2L system, and 2L HET would produce
negative correlations. But, on their face, our findings
show that this intuition cannot be correct. For example,
we showed in the section “2L HET Can Never Be Es-
tablished on the Basis of ASP Data” that for every 2L
HET model there was also a 2L EPI model that would
produce the same IBD-sharing probabilities. This implies
directly that whatever the intermarker correlation may
be under the 2L HET model, an identical correlation
can be obtained under some 2L EPI model. More gen-
erally, the result in section “But Can We Sometimes Es-
tablish 2L EPI?” that observed joint (two-marker) IBD-
sharing matrices cannot distinguish 2L HET from 2L
EPI for any but a small group of exceptional generating
models implies directly that correlations based on mar-
ginal IBD sharing distributions also cannot distinguish
2L HET from 2L EPI. (However, there are three-locus
or other types of multilocus models for which cor-
relations may provide relevant information regarding
2L HET vs. 2L EPI; see MacLean et al. 1993; Cox et
al. 1999.)

There has been considerable recent interest in detect-
ing or exploiting “gene-gene interactions” in ASP data.
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For example, Holmans (2002) investigated the power to
detect gene-gene interaction or epistasis (he uses the
terms interchangeably, as do many investigators), which
he defined as positive correlation in the marginal IBD
sharing (and this too seems to be a common practice in
the contemporary literature). There is absolutely nothing
wrong with this from a statistical point of view, and,
insofar as marginal correlations are of interest, his find-
ings provide a useful assessment of power. However, as
we have shown, when we base our definitions of 2L HET
and 2L EPI on the usual genetic concepts, then epistasis
turns out to be something fundamentally different from
positive correlation in the marginal IBD sharing. (We
note, however, that the term “gene-gene interaction,” as
defined in the quantitative-trait literature, necessarily
differs from our definition of “2L EPI” in terms of the
penetrance model, a model that is only relevant for di-
chotomous traits.)

This point applies as well to any statistics that are
functions of the marginal IBD sharing, such as single-
locus LOD scores or the various model-free statistics.
And, the strength of our intuitions notwithstanding, it
applies to any method based on subsetting or “condi-
tioning” at one marker based on the magnitude of a
linkage statistic at the other locus: as it turns out, 2L
EPI does not imply that ASPs with positive linkage ev-
idence at one locus will tend to also have positive linkage
evidence at the other; and 2L HET does #not imply that
they will tend to have negative linkage evidence at the
other. This finding, however, may not carry over directly
to statistical methods based on correlational structure in
more complex pedigrees (including unaffected individ-
uals); and the implications for inference in the context
of more complicated multilocus models are also unclear
(see, e.g., MacLean et al. 1993; Cox et al. 2001).

Although these fundamental mathematical results hold
regardless of the value of the correlation, it is worth not-
ing, perhaps surprisingly, that this implies the existence
of epistasis models with fairly strong negative correlation
in the marginal IBD sharing among ASPs. (As has been
noted elsewhere [MacLean et al. 1993], 2L epistatic mod-
els tend to predict correlations very close to 0, rather than
positive correlations; and indeed almost all models we
considered in the section “But Can We Sometimes Estab-
lish 2L EPI?” yielded correlations close to 0 under both
2L HET and 2L EPI generating conditions.) For example,
we generated a simple RR 2L HET model (both disease
allele frequencies = 0.001; both recombination fractions
= 0; and penetrances f, = 0.00, £, = 0.20, f, = 0.40,
and f,; = 0.520) that yielded a correlation of —0.417.
To choose just one example of a corresponding 2L EPI
model, increasing £, to 0.90, which produces an epistatic
model with penetrance ratios incompatible with the FHE,
yields identical IBD-sharing probabilities to four decimal
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places. Thus, this particular model, representing strong
positive epistasis, also yields a correlation of —0.417.

Discussion

Our starting point for this work was a rigorous definition
of “heterogeneity” that was intended to capture the bi-
ological meaning of the term (independent gene action at
each locus) through a mathematical representation in
terms of probabilistic independence and to provide a def-
inition of “epistasis” in terms of violations of probabilistic
independence. Using these new definitions, we were able
to show that 2L HET cannot be distinguished from 2L
EPI on the basis of ASP data. This result follows from
properties of the models themselves and from properties
of ASP data. It is a matter of mathematical principle,
which no quantity of data can overcome.

Even in retrospect, this is perhaps a surprising result.
With data on a single marker, under linkage equilib-
rium, ASPs provide just two pieces of information: the
proportion of pairs sharing zero and one marker alleles
IBD, respectively (the proportion sharing two must be
such that the three numbers sum to one). But the joint
two-marker IBD matrix contains nine cells (the contents
of which must sum to one), so that, in general, there
are eight independent pieces of information from which
to work in estimating parameters. (Under some circum-
stances there will be fewer than eight; for instance, the
number will be smaller if the penetrances and allele
frequencies are set up in such a way that the resulting
IBD matrix is symmetric so that there are fewer inde-
pendent cells.) In view of the limited information on
penetrance conveyed by ASPs, together with the limi-
tation on the number of estimable parameters, it seems
reasonable that very little specific information on the
penetrance structure of the underlying model could be
captured from data on a single marker. But shouldn’t
we expect to be able to distinguish 2L HET from 2L
EPI if we can use two markers to estimate as many as
eight independent parameters?

When we began this project, we predicted that it
would not be possible to distinguish 2L HET from 2L
EPI in ASPs on the basis of a single marker but that
simultaneous consideration of two markers might ame-
liorate the problem. In fact, however, one marker versus
two makes a quantitative difference (through the stan-
dard errors on estimates of estimable parameters) but
not a qualitative one: for the general class of models
considered in the “But Can We Sometimes Establish 2L
EPI?” section, except for complete-epistasis models
with no phenocopies, 2L HET could not be distin-
guished from 2L EPI either on the basis of one marker
nor on the basis of simultaneous consideration of IBD
sharing at both markers. Thus, the inclusion of the
additional, informative (linked) marker does increase
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the number of estimable (IBD) parameters, but it does
not improve estimation of the penetrance structure
necessary to distinguish 2L HET from 2L EPI.

Similarly, it might be supposed that, given the limited
amount of genetic information in a single ASP, com-
pared with a larger multiplex family, that many more
ASPs would be required to differentiate 2L HET from
2L EPI relative to the number of larger families required.
But again, the limitation in the ASP structure turns out
to be not only quantitative but also qualitative: the in-
formation on the penetrance structure required for dis-
tinguishing 2L HET from 2L EPI simply is not present
in ASP data; therefore, no number of ASPs will be suf-
ficient to allow the distinction to be made. The problem
is inherent in the data structure itself and cannot be over-
come by increasing the number of these structures in the
data set. This is perhaps ironic: one of the attractions of
ASPs for many investigators is that their analysis does
not require parameterization in terms of penetrances; as
it turns out, the limited penetrance information they con-
vey undercuts their utility for moving from simple linkage
findings to more complex questions of etiology.

These results may serve as a cautionary note for any
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work in statistical genetics. Depending upon the genetic
question one wishes to address, ensuring the appropri-
ateness of the statistical model and of the available data
can be tricky: mathematical features of the data that
intuitively seem relevant, such as intermarker correla-
tions, may bear quite counterintuitive relationships to
underlying genetic concepts; alternative family struc-
tures exhibit qualitative, not just quantitative, differ-
ences in the types of genetic information they convey,
so that adding more families of a given type to a data
set will not necessarily overcome problems of inade-
quate information; and simultaneous consideration of
additional markers or genomic locations will not nec-
essarily be useful in all contexts, even under multilocus
models.
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Computational Details for Results of the Section “But Can We Sometimes Establish 2L EPI?”

All assumptions are as stated in the text. Let F be the 3 x 3 penetrance matrix. Let p, be the frequency of allele
A, g, = 1—p, = P(a); and let p,,q, be the corresponding allele frequencies at the B locus. For i = 0, 1, and 2,
let p,, be the column vector of nine conditional probabilities of the genotype at the first trait locus, given that the
number of shared alleles at the first trait locus is i; these probabilities are enumerated in table 1 of the article by
Haseman and Elston (1972). Let p,, be the corresponding column vector for the second trait locus. Let T, Ty be
the number of shared alleles at the A and B loci, respectively. For 4,j = 0, 1, and 2, the conditional probability

p; = P(ASPT, =i and T, = j) = >, P(ASPG,Gi)P(GA|Ty = IP(Gy[T, = j) = piF®F)py,

(GA,GB

where X ;, g5 denotes the sum over all possible two-locus genotypes, and F @ F is the Kronecker product of
the penetrance matrix F with itself (a 9 x 9 matrix). Note that p, depends on the penetrances and the allele
frequencies at the two trait loci.

Let M, and M, be the number of shared alleles at the two marker loci respectively. (Note that this notation
differs from the notation in the main body of the text, where M, and M, referred to the markers themselves.)

Then

PASP) =, >

(i=0...2) < (j=0...2)

=2

(i=0...2)

P(ASP|TA =4 Ty =/)P(T, =4 T, =)

) P; (T, = i) P(Ty =)

(j=0...2
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and

> P(ASP,M,

(1=0...2)

P(ASPM, = i,M, = j) = >,
_Zk 0.. 22
=2

.2) (1=0...2)

=M, =T, = kT, =)

(k=0...2)

P(ASP|T, = kT, = )P(M, = i,T, = K)P(M, = ;T, = I)

1=0...2)

pklP( - i,TA = k)P( - 7) l)

As in the text, we have assumed that the A and B loci are unlinked to one another. The probabilities P(T, = i) =
P(T, = i) are 0.25, 0.50, and 0.25, for i = 0, 1, and 2, respectively. The joint probabilities P(IM, = i, T, = k)
and P(M, = j, T, = [) are functions of the recombination fractions between each trait locus and its corresponding
marker locus; they can be computed on the basis of formulas given in table 4 of the article by Haseman and Elston
(1972).

Finally, we can calculate the joint IBD-sharing probabilities at the two marker loci by use of the equation

P(MA = ijMB = laASP)
P(ASP) ’

P(M, = i,M; = j|ASP) =

where P(ASP) can also be calculated by summing the numerator over i,j = 0, 1, and 2, respectively.

These equations were used to calculate joint two-marker-locus IBD-sharing probabilities from an input set of
genetic parameters (recombination fractions, disease allele frequencies, and two-locus penetrances). We then im-
plemented a grid-search to compute exact asymptotic In likelihoods (support) over a discretized grid of the entire
parameter space. All parameters varied from 0 to 1, with the restrictions f; < fip,fp < fufy < fs- For f4, the range
(0,1) was covered in steps of 0.001; the remaining parameters were varied at step sizes of 0.01. The support for
each parameter vector was compared with the maximum support (which was always obtained under the generating
values) to six decimal places of precision in most cases and in some cases (for verification purposes) to 10. A
parameter vector yielding support equal to the maximum support to the specified precision was considered as
satisfying the FHE if and only if it met the condition f,; = f, + f; — fi X f; to three decimal places, the generating
precision on f,.

In all, 17 DR, 9 RR, and 3 DD models were run. Disease allele frequencies were set as both = 0.001, both =
0.10, or one at each value; recombination fractions were set as both = 0, both = 0.05 or both = 0.10, or one
at each of two different values (0, 0.05, or 0.10). Both 2L HET (for verification purposes) and 2L EPI penetrance
models were tried; included were both simple complete 2L EPI models (f, = f; = f, = 0, f,; > 0) and also 2L EPI
models whose penetrance ratios are incompatible with the FHE (e.g., f, = 0.40, f, = 0.20, and f,, = 0.90). Al-
though these generating models are obviously in no way exhaustive of the set of all possible generating models,
they are fully adequate to provide counter examples to the hypothesis that the penetrance ratios are, in general,
sufficiently identifiable from ASP data to allow differentiation of 2L HET from 2L EPI.
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